Machine Learning Engineer

Job Type: Full Time
Job Location: Bangalore Hybrid
Salary: 17-19LPA
Years of Experience: 3-5yrs

Key Responsibilities

Data Science & Modeling

  • Understand business problems and convert them into ML problem statements
  • Perform EDA, feature engineering, and feature selection
  • Build and evaluate models using:
  • Regression, classification, clustering
  • Time-series forecasting
  • Anomaly detection and recommendation systems
  • Apply model evaluation techniques (cross-validation, bias-variance tradeoff, metrics selection)

ML Engineering & Deployment

  • Productionize ML models using Python-based pipelines
  • Build reusable training and inference pipelines
  • Implement model versioning, experiment tracking, and retraining workflows
  • Deploy models using APIs or batch pipelines
  • Monitor model performance, data drift, and prediction stability

Data Engineering Collaboration

  • Work with structured and semi-structured data from multiple sources
  • Collaborate with data engineers to:
  • Define data schemas
  • Build feature pipelines
  • Ensure data quality and reliability

Stakeholder Communication

  • Present insights, model results, and trade-offs to non-technical stakeholders
  • Document assumptions, methodologies, and limitations clearly
  • Support business decision-making with interpretable outputs

Required Skills

Core Technical Skills

  • Programming: Python (NumPy, Pandas, Scikit-learn)
  • ML Libraries: XGBoost, LightGBM, TensorFlow / PyTorch (working knowledge)
  • SQL: Strong querying and data manipulation skills
  • Statistics: Probability, hypothesis testing, distributions
  • Modeling: Supervised & unsupervised ML, time-series basics

ML Engineering Skills

  • Experience with model deployment (REST APIs, batch jobs)
  • Familiarity with Docker and CI/CD for ML workflows
  • Experience with ML lifecycle management (experiments, versioning, monitoring)
  • Understanding of data leakage, drift, and retraining strategies

Cloud & Tools (Any One Stack is Fine)

  • AWS / GCP / Azure (S3, BigQuery, SageMaker, Vertex AI, etc.)
  • Workflow tools: Airflow, Prefect, or similar
  • Experiment tracking: MLflow, Weights & Biases (preferred)

Good to Have

  • Experience in domains like manufacturing, supply chain, fintech, retail, or consumer tech
  • Exposure to recommendation systems, forecasting, or optimization
  • Knowledge of feature stores and real-time inference systems
  • Experience working with large-scale or noisy real-world datasets

Educational Qualification

  • Bachelor’s or master’s degree in computer science, Statistics, Mathematics, Engineering, or related fields

Apply for this position

Allowed Type(s): .pdf, .doc, .docx